Contextually Mediated Semantic Similarity Graphs for Topic Segmentation

Geetu Ambwani & Tony Davis

StreamSage/Comcast

Outline of talk

- Motivations
- Relevance intervals
- Graphs representing documents
 Application to segmentation
- Experiments and Evaluation
 - Comparison with other systems
- Conclusions and future work

Topic segmentation

- Topic segmentation defined: dividing a document into topically coherent segments
 - □ Typically a partition (exhaustive, non-overlapping segments)
 - □ But could vary (e.g., hierarchical, overlapping, "fuzzy", etc.)
 - □ Labeling the segments with good terms is a separate problem
- Advantages of segmenting video (e.g., news broadcasts)
 - □ Viewers can select only the portions of a program they want to watch
 - □ They can browse in the order they want

Related Work on Segmentation

- Previous work has used several approaches
 - Discourse features
 - Some signal a topic shift; others a continuation
 - Highly domain-specific
 - □ Similarity measures between adjacent blocks of text
 - Typical document similarity measures used, as in TextTiling (Hearst, 1994) or Choi's algorithm (Choi, 2000)
 - Choi measures lexical similarity among neighboring sentences
 - Posit boundaries at points where similarity is low
 - Lexical chains: repeated occurrences of a term (or of closely related terms)
 - Again, posit boundaries where cohesion is low (few lexical chains cross the boundary (e.g., Galley, et al., 2003)

Motivations behind our approach

- Model both the influence of a term beyond the sentence it occurs in and semantic relatedness among terms
 - The range of a term's influence extends beyond the sentence it occurs in, but how far? (relevance intervals)
 - □ Semantic relatedness among terms (contextually mediated graphs)
- Apply this model to topic-based segmentation

Relevance Intervals

Relevance Intervals (RIs)

- Each RI is a contiguous segment of audio/video deemed relevant to a term
- Developed originally to improve audio/video search and retrieval
- RI calculation relies on a pointwise mutual information (PMI) model of term co-occurrence (built from 7 years of *New York Times* text, 325M words)
- Previously evaluated on radio news broadcasts, and currently deployed in Comcast video search

$$PMI(x,y) = \log \frac{P(x,y)}{P(x)P(y)}$$

Anthony Davis, Phil Rennert, Robert Rubinoff, Tim Sibley, and Evelyne Tzoukermann. 2004. Retrieving what's relevant in audio and video: statistics and linguistics in combination. *Proceedings of RIAO 2004*, 860-873.

Relevance Intervals (RIs)

- Each RI is a contiguous segment of audio/video deemed relevant to a term
 - RIs are calculated for all content words (after lemmatization) and common multi-word expressions
 - An RI for a term is built outwards, forward and backward from a sentence containing that term, based on:
 - PMI values between pairs of terms across sentences; high PMI values suggest semantic similarity between terms
 - Discourse markers which extend or end an RI
 - Synonym-based query expansion, using information from WordNet
 - Anaphor resolution roughly based on Kennedy and Boguraev (1996)
 - Nearby RIs for the same term are merged
 - Large-scale vocabulary shifts (as determined by a modified version of Choi (2000) to indicate boundaries) *****

Relevance Intervals: an Example

Index term: squatter

among the sentences containing this term are these two, near each other:

Paul Bew is professor of Irish politics at Queens University in Belfast. In South Africa the government is struggling to contain a growing demand for land from its black citizens.

Authorities have vowed to crack down and arrest **squatters** illegally occupying land near Johannesburg.

In a most serious incident today more than 10,000 black South Africans have seized government and privately-owned property.

Hundreds were arrested earlier this week and the government hopes to move the rest out in the next two days.

NPR's Kenneth Walker has a report.

Thousands of **squatters** in a suburb outside Johannesburg cheer loudly as their leaders deliver angry speeches against whites and landlessness in South Africa.

"Must give us a place..."

• We build an RI for **squatter** around each of these sentences...

Relevance Intervals: an Example

Index term: squatter

among the sentences containing this term are these two, near each other:

Paul Bew is professor of Irish politics at Queens University in Belfast. [Stop RI Expansion]

In South Africa the government is struggling to contain a growing demand for land from its black citizens. [PMI-expand]

Authorities have vowed to crack down and arrest **squatters** illegally occupying land near Johannesburg.

In a most serious incident today more than 10,000 black South Africans have seized government and privately-owned property. [PMI-expand]

Hundreds were arrested earlier this week and the government hopes to move the rest out in the next two days.

NPR's Kenneth Walker has a report.

Thousands of **squatters** in a suburb outside Johannesburg cheer loudly as their leaders deliver angry speeches against whites and landlessness in South Africa. [Stop RI Expansion]

"Must give us a place ... "

• We build an RI for **squatter** around each of these sentences...

Relevance Intervals: an Example

Index term: squatter

among the sentences containing this term are these two, near each other:

Paul Bew is professor of Irish politics at Queens University in Belfast. [Stop RI Expansion]

In South Africa the government is struggling to contain a growing demand for land from its black citizens. [PMI-expand]

Authorities have vowed to crack down and arrest **squatters** illegally occupying land near Johannesburg.

In a most serious incident today more than 10,000 black South Africans have seized government and privately-owned property. [PMI-expand]

Hundreds were arrested earlier this week and the government hopes to move the rest out in the next two days. [merge nearby intervals]

NPR's Kenneth Walker has a report. [merge nearby intervals]

Thousands of **squatters** in a suburb outside Johannesburg cheer loudly as their leaders deliver angry speeches against whites and landlessness in South Africa. [Stop RI Expansion]

"Must give us a place ... "

The two intervals for squatter are merged, because they are so close

Documents → Graphs → Segmentation

(S_1) Yesterday, I took my dog to the park.

- (S_2) While there, I took him off the leash to get some exercise.
- (S_3) After 2 minutes, Spot began chasing a squirrel.
 - _____(Topic Shift)_____
- (S_4) Then, I needed to go grocery shopping.
- (S_5) So I went later that day to the local store.
- (S_6) Unfortunately, they were out of cashews.

$RIs \rightarrow Nodes$

 Construct a graph in which each node represents a term and a sentence, iff the sentence is contained in an RI for that term

Relevance Intervals for sample terms in the discourse

$RIs \rightarrow Nodes$

- Construct a graph in which each node represents a term and a sentence, iff the sentence is contained in an RI for that term
 - Nodes corresponding to these Relevance Intervals

Connecting the Nodes ...

All edge strengths between a term and itself are initialized to 1.0

Calculating connection strengths for edges

For edges between different terms, initialize their strengths to normalized PMI values: $s(x,y) = 1 - 1/\exp(PMI(x,y))$

Calculating connection strengths for edges

Connection strength formula

Connection-strength(A,B) = 2s(A,B) + s(A,X)s(X,B) + s(B,y)s(Y,A)

and in general, for terms a and b in sentences i and i + 1 respectively:

$$c(a,b) = \sum_{x \in W} s(x,a)s(x,b) + \sum_{x \in W} s(y,a)s(y,b)$$

Filtering edges in the graph

 We filter out edges with a connection strength below a set threshold (we've tried a couple and usually use 0.5)

Graph Representation of Document

- Lets look at a real example. 1st 8 minutes of an episodes of Bizarre Foods.
- Bizarre_Foods_With_Andrew_Zimmern-Japan.pdf

Segmentation from graphs

- General idea: look for places in the graph where connections are sparse or weak
 - □ Typically, this will be where relatively few Ris cross a boundary
 - Edges with low connection strengths are unlikely to bear on topical coherence, so it's best to remove them from the graph
 - "Normalized novelty": on the two sides of a potential boundary, the number of nodes labeled with the same terms, normalized by the total number of terms

Graph representation of documents

Example snippet and graph from t.v. news broadcast

- **S_190** We've got to get this addressed and hold down health care costs.
- **S_191** Senator ron wyden, the optimist from oregon, we appreciate your time tonight.
- S_192 Thank you.
- **S_193** Coming up, the final day of free health clinic in kansas city, missouri.

Experiments and Evaluation

Evaluation metrics

- How well does the hypothesized set of boundaries match the true (reference) set?
- P_k (Beeferman, et al. 1997) and WindowDiff (Pevzner & Hearst, 2002)
 - Both compare hypothesis to reference segmentation within a sliding window
 - \square P_k is the proportion of windows in which hypothesis and reference disagree on the number of boundaries
 - WindowDiff tallies the difference in the number of boundaries in each window
 - Both commonly used instead of precision and recall, because they take approximate matching into account
 - □ They have drawbacks of their own, however

Doug Beeferman, Adam Berger, and John Lafferty. 1997. Text Segmentation Using Exponential Models. *Proceedings of EMNLP 2*

Lev Pevzner and Marti A. Hearst. 2002. A critique and improvement of an evaluation metric for text segmentation. *Computational Linguistics*, 28:1

Evaluation metrics

P_k and WindowDiff: sliding window is half the average reference segment size

hypothesis segmentation

Evaluation metrics

 One black mark against the hypothesis segmentation, where it differs from the reference (mistakes closer to reference boundaries appear in fewer windows, and are thus penalized less)

reference segmentation

hypothesis segmentation

Systems compared

Choi	Implementation from MorphAdorner*
SN	Our system, using a single node for each term occurrence (no extension)
FE	Our system, using an extension of a fixed number of sentences for each term from the sentence it occurs in
SS	Our system, using Ris without "hard" boundaries determined by the modified Choi algorithm
SS+C	Our full segmentation system, incorporating "hard" boundaries determined by the modified Choi algorithm

* morphadorner.northwestern.edu/morphadorner/-textsegmenter

Results on pseudodocuments

185 documents each containing 20 Concatenated *New York Times* articles Number of boundaries not specified to systems

system	precision	recall	F	Pk	WindowDiff
Choi	0.404	0.569	0.467	0.338	0.360
SN	0.096	0.112	0.099	0.570	0.702
FE	0.265	0.140	0.176	0.478	0.536
SS	0.566	0.383	0.448	0.292	0.317
SS+C	0.578	0.535	0.537	0.262	0.283

Results on TV shows

- Data: Closed captions for 13 tv shows (News, talk shows, documentaries, lifestyle shows)
- 5 annotators manually marked up major and minor boundaries, using 1-5 rating scale
- As expected, IAA is low, so we create a reference annotation

TV show closed-captions: inter-annotator agreement on segmentation

- Pk values between pairs of annotators: all boundaries and major boundaries
- Note that matrix is asymmetrical

	Α	B	С	D	Ε	Ref
Α		0.36	0.30	0.27	0.42	0.20
		0.48	0.45	0.44	0.67	0.38
В	0.29		0.29	0.27	0.33	0.20
	0.40		0.32	0.33	0.55	0.25
С	0.57	0.60		0.41	0.67	0.40
	0.48	0.44		0.20	0.61	0.18
D	0.36	0.41	0.27		0.53	0.22
	0.46	0.46	0.20		0.63	0.26
E	0.33	0.31	0.33	0.32		0.25
	0.35	0.34	0.30	0.31		0.27
Ref	0.25	0.32	0.24	0.21	0.42	
	0.39	0.35	0.17	0.22	0.58	

TV show closed-captions: segmentation

Accuracy is low, which is unsurprising given the low IAA

system	precision	recall	F	Pk	WindowDiff	
All topic boundaries						
Choi	0.197	0.186	0.184	0.476	0.507	
SS+C	0.315	0.208	0.240	0.421	0.462	
Major topic boundaries only						
Choi	0.170	0.296	0.201	0.637	0.812	
SS+C	0.271	0.316	0.271	0.463	0.621	

Conclusions and future work

Conclusions and future work

Conclusions

- Graphs constructed from RIs do seem to help segmentation
- Semantic relatedness with reinforcement from neighboring terms
- Works decently on "noisy" material, such as TV shows
- Doesn't require any training; however, there are lots of parameters to play with (and we have started exploring training to optimize them)

Future work

- Several ways to segment a graph: try community detection or learn boundary detection through various graph features
- Try to use graphs for more complex segmentation tasks, such as hierarchical segmentation; community structure in a graph might reflect hierarchical organization of discourse
- Try to find the most "central" terms in a subgraph, to use as segment labels

We gratefully acknowledge...

Gene Chipman Oliver Jojic Akash Nagle Robert Rubinoff Hassan Sayyadi

Thank you! Questions?