# Co-occurrence Cluster Features for Lexical Substitutions in Context

Chris Biemann Microsoft / Powerset cbiemann@microsoft.com

ACL Workshop on TextGraphs, Uppsala, Sweden, July 15 2010

#### **Outline**



- Task: Lexical Substitution for Semantic Indexing
- Supervised Word Sense Disambiguation
- Clustering of Co-occurrences for Word Sense Induction
- Using Co-occurrence Clusters as Features
- Two Experiments:
  - SemEval 07 lexical sample WSD
  - TWSI Substitution Quality
- Conclusion

#### Lexical Substitution for Semantic Indexing

- Traditional IR: query words disambiguate each other
- Semantic IR: lexical expansion in absence of disambiguation leads to spurious matches

#### who studied in prison?

search

- The Office Bearers are Selected by an Expert Selection Committee based on Interview.All the students studying in this college are members of this S WordNet 2.1: Union 2007-08 is Mr.A.Anto Dungston Inigo. PSG Colle (n: college) British slang for prison
- To gain her reciprocation he goes to study in an evening college as her classmate. Gemini (2002 film)
- Task: supply substitutions in context for indexing
- Setup: disambiguate word sense and assign substitutions accordingly

# **Baseline supervised WSD System**



- Supervised WSD: Per target word, learn a model that assigns one of the possible senses based on features on contexts
- Baseline: 15 features (relative to target)
  - (2) word forms left and right
  - (2) POS sequences left and right bigram
  - (2) POS tags of left and right word
  - (1) POS tag of target
  - (4) two left and two right nouns
  - (2) left and right verbs
  - (2) left and right adjectives
- Classifier: Weka's AODE (handles dependent nominal features well)

# Why co-occurrence cluster features ?

- Successful WSD systems model topicality via topic signatures (Martinez et al., 2008), semantic kernels and SVD (Gliozzo et al. 2006) etc.
- Co-occurrence cluster features: simple alternative: does not need predefined word sense inventory
- Approach is similar to word sense induction (e.g. (Veronis, 2004). Difference: WSI is normally used to greedily map induced senses to target senses. Here: Use output of several WSI systems as a feature

# **Obtaining Cooc Clusters**



- Significant sentence-base co-occurrences for text corpus (log likelihood, threshold 6.63)
- Per target, cluster the open neighborhood graph (Widdows and Dorow, 2002) with Chinese Whispers (Biemann, 2006)
- Graph parameters:
  - t={50,100,200}: include most significant t neighbors for target
  - n={50,100,150,200,250}: draw edge between nodes if one is contained in the n top sig. co-occurrences of the other
- Clustering Parameter: down-weighting node influence according to degree d:
  - ► a) no down-weighting
  - ▶ b) weight=1/log(d+1)
  - ► c) weight=1/d

#### **Cooc cluster examples "bank"**



#### Clustering for t=50, n=200, weighting (a)

- bankO: largest, north, branches, eastern, opposite, km, east, west, branch, Thames, banks, located, Danube, town, south, situated, River, Rhine, river, western, commercial, central, southern
- bank1: right, left
- bank2: money, robbers, deposit, robberies, cash, currency, account, deposits, Bank, robbery, funds, financial, banking, loans, notes, robber, rob, accounts, credit, assets, teller, Banco, loan, investment, savings

#### Clustering for t=50, n=100, weighting (c)

- bankO: eastern, banks, central, river, km, western, south, southern, located, largest, east, deposits, commercial, Thames, north, west, Danube, town, situated, Rhine, River
- bank1: branches, branch
- bank2: robberies, robbers, robbery, robber
- bank3: right, left, opposite
- bank4: loans, cash, investment, teller, account, financial,loan, deposit, credit, funds, accounts, assets, savings, banking, money, rob
- bank5: Banco, currency, notes, Bank

# Adding Cooc Clusters as features



- Feature=cooc cluster (1 parameterization)
- Feature Value: cluster ID with highest context overlap
- Adding these features to the baseline model

Testing feature combinations:

- 1. Add one at the time, rank by contribution
- 2. Take k top-ranked and add them together

#### Experiment 1: SemEval 2007 task 17



- Sense annotation: Semcor coarse-grained
- Corpus for clustering: New York Times
- Cross-validation on training (Precision in %):
  - ► Baseline: 87.1%
  - ► Single cooc features: 88.0%-88.3%
  - Best combination k=3: 88.5% (used)
- Test:

| System                   | <b>F1</b>        |
|--------------------------|------------------|
| NUS-ML                   | $88.7\% \pm 1.2$ |
| top3 cluster, max recall | $87.8\% \pm 1.2$ |
| baseline, max recall     | $87.3\% \pm 1.2$ |
| UBC-ALM                  | $86.9\% \pm 1.2$ |

# **TWSI example**



• [189 sentences ] magazine@@1

Their first album was released by Columbia Records in 1972, and they were voted "Best New Band "by Creem **magazine**.

publication [42], periodical [32], journal [30], manual [9], gazette [5], newsletter [4], annual [3], digest [3], circular [2]

• [5 sentences ] magazine@@2

Instead, the film is pulled through the camera solely through the power of camera sprockets until the end, at which point springs or belts in the camera **magazine** pull the film back to the take - up side.

cartridge [6], clip [5], chamber [3], holder [3], mag [3], ammunition chamber [2], cache [2], loading chamber [2]

# **TWSI in Numbers**



- Created using a bootstrapping process using AMT
- 397 words (top frequent nouns), all but 50 from trusted turkers
- \$8.30 cost per word on average
- 2.1 senses / word (WordNet: 6.3)
- avg. 63 sample sentences per sense
- 51,736 sentences with target word sense labels
- avg. 17 substitutions with count>=2 per word
- avg. 4.5 substitutions with count>=10 per word

http://aclweb.org/aclwiki/index.php?title=Image:TWSI397.zip

# **Experiment 2a) Disambiguation**



- Sense annotation: TWSI 1.0
- Corpus for clustering: Wikipedia
- Learning curve (ambiguous targets only):





|          | Substitutions |             |             |
|----------|---------------|-------------|-------------|
|          | Gold          | System      | Random      |
| YES      | 469 (93.8%)   | 456 (91.2%) | 12 (2.4%)   |
| NO       | 14 (2.8%)     | 27 (5.4%)   | 485 (97.0%) |
| SOMEWHAT | 17 (3.4%)     | 17 (3.4%)   | 3 (0.6%)    |

| coverage | YES   | NO   |
|----------|-------|------|
| 100%     | 91.2% | 5.4% |
| 95%      | 91.8% | 3.4% |
| 90%      | 93.8% | 2.9% |
| 80%      | 94.8% | 2.0% |
| 70%      | 95.7% | 0.9% |

#### Conclusion



- Motivated WSD for Semantic IR
- Used co-occurrence clustering as features in supervised WSD task
- Showed state-of-the-art performance on standard WSD task
- Demonstrated high substitution quality using the TWSI

Cheap way to model topicality requiring only a POStagged corpus

#### **THANKS FOR YOUR ATTENTION!**



# QUESTIONS?

#### Abstract



This paper examines the influence of features based on clusters of cooccurrences for supervised Word Sense Disambiguation and Lexical Substitution.

- Cooccurrence cluster features are derived from clustering the local neighborhood of a target word in a co-occurrence graph based on a corpus in a completely unsupervised fashion. Clusters can be assigned in context and are used as features in a supervised WSD system.
- Experiments fitting a strong baseline system with these additional features are conducted on two datasets, showing improvements.
- Cooccurrence features are a simple way to mimic Topic Signatures (Martinez et al., 2008) without needing to construct resources manually. Further, a system is described that produces lexical substitutions in context with very high precision.