

Graph-based Clustering for Computational Linguistics: A Survey

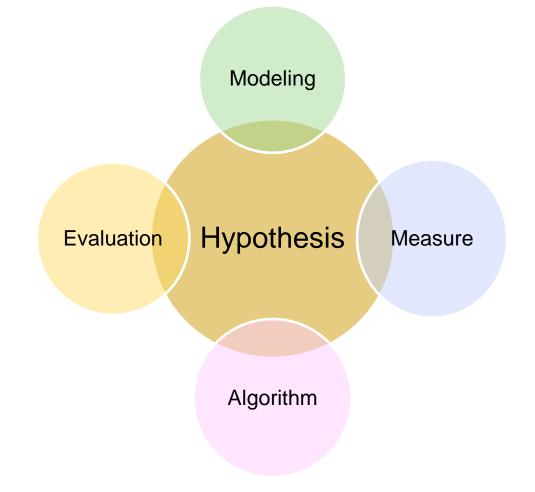
Zheng ChenHeng JiBLENDER: Cross-lingual Cross-document IE LabDepartment of Computer ScienceThe Graduate Center and Queens CollegeThe City University of New YorkJuly, 2010

Long standing, wide applications in various areas

- Gaining interests from Computational Linguistics, applied in various NLP problems
- Bridging theories and applications, especially for computational linguistics

Soutline (Part I: Theory)

Graph-based Clustering Methodology (a five-part story)



Soutline (Part II: Applications)

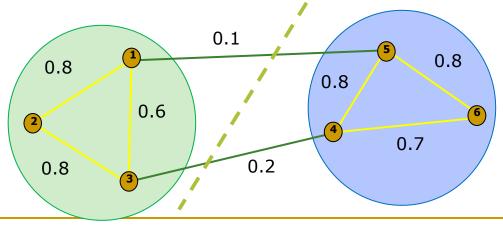
- Coreference Resolution
- Word Clustering
- Word Sense Disambiguation

Part I Graph-based Clustering Methodology

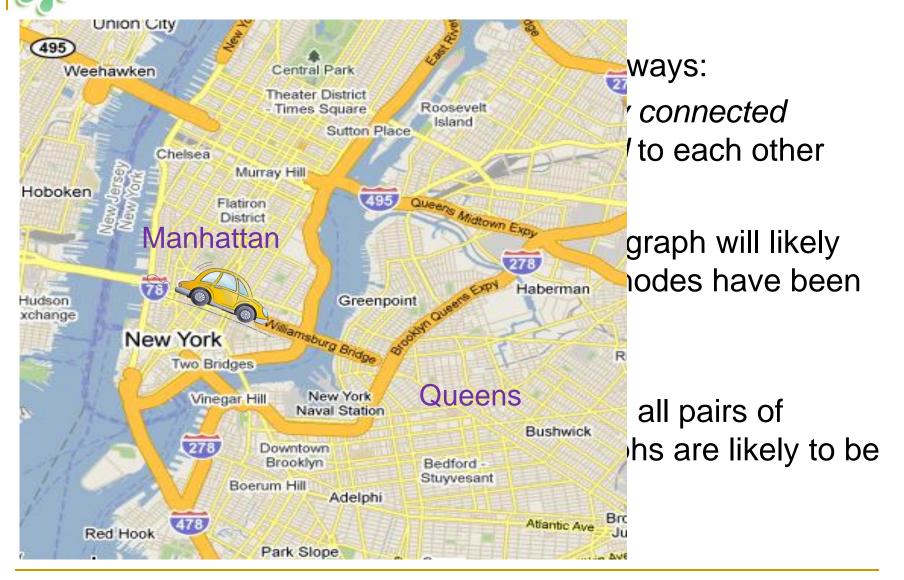
Sclustering in Graph Perspective

 $X = \{x_1, ..., x_N\}$: a set of data points $S = (s_{ij})_{i,j=1,...,N}$: the similarity matrix in which each element indicates the similarity $s_{ij} \ge 0$ between two data points x_i and x_j .

- Hard clustering problem: split the data points into several non-overlapping clusters such that points in the same cluster are similar and points in different cluster are dissimilar.
- Graph representation of data points



Hypothesis



transforming a problem into graph structure

 $S_{ii} > \varepsilon$

k = 2

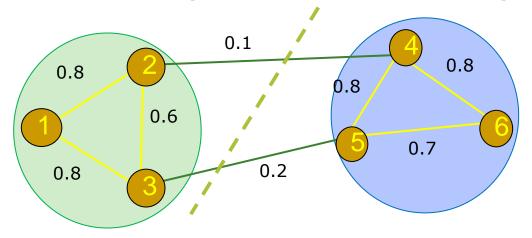
- Determine the meaning of nodes, edges
- Compute the edge weights
- Graph construction (Luxburg, 2006)
 - . The ε -neighborhood graph
 - . k-nearest neighbor graph
 - . mutual k-nearest neighbor graph
 - . The fully connected graph
- Which graph should be chosen and how to choose parameters? (no theoretical justifications)

k = 2

Measure: Objective function that rates clustering quality

Measures	Comments
1. intra-cluster density 2. inter-cluster density	 optimizing one is equivalent to optimizing the other both favor clusters containing isolated vertices
<i>3. ratio cut</i> (Hagan and Kahng, 1992) <i>4. normalized cut</i> (Shi and Malik, 2000)	 ratio cut is suitable for unweighted graph, for weighted graph, normalized cut is recommended both favor clusters with equal size.
<i>5. performance</i> (Brandes et al., 2003)	
 6. expansion 7. conductance 8. bicriteria (Kannan et al., 2000) 	 expansion treats all nodes as equally important conductance gives more importance to nodes with high degrees and edge weights neither enforces qualities pertaining to inter-cluster weights, but bicriteria does
<i>9. modularity</i> (Girvan and Newman, 2002)	 requires global knowledge of the graph's topology, <i>local modularity</i> (Clauset ,2005) resolution limit problem, <i>HQCut</i> (Ruan and Zhang,2008) only measures existing edges in the graph but does not explicitly take non-edges into consideration, <i>Max-Min Modularity</i> (Chen et al.,2009)

Soal: cluster the graph into 2 sub-graphs



Try all possible combinations:

maximize
$$\sum_{i=1}^{2} intra_density(C_i)$$

Algorithm: optimizing the measure

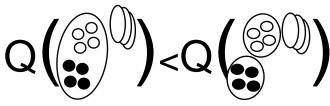
Category		Algorithms	optimized	running
			measure	complexity
divisive	cut-based	Kernighan-Lin algorithm	intercluster	$O(V ^3)$
		(Kernighan and Lin, 1970)		
		cut-clustering algorithm	bicriteria	O(V)
		(Flake et al., 2003)		
	spectral	unnormalized spectral clustering	ratiocut	O(V E)
		(Luxburg, 2006)		
		normalized spectral clustering I	ncut	O(V E)
		(Luxburg, 2006; Shi and Malik, 2000)		
		normalized spectral clustering II	ncut	O(V E)
		(Luxburg, 2006; Ng, 2002)		
		iterative conductance cutting (ICC)	conductance	O(V E)
		(Kannan et al.,2000)		
		geometric MST clustering (GMC)	pluggable(any	O(V E)
		(Brandes et al., 2007)	quality measure)	
		modularity oriented	modularity	O(V E)
		(White and Smyth, 2005)		
	multilevel	multilevel recursive bisection	intercluster	$O(V \log K$
		(Karypis and Kumar, 1999)		
		multilevel K-way partitioning	intercluster	0(V
		(Karypis and Kumar, 1999)		+ KlogK)
	random	Markov Clustering Algorithm (MCL)	performance	$O(m^2 V)$
		(Dongen, 2000)		
	shortest	betweenness	modularity	$O(V E ^2)$
	path	(Girvan and Newman, 2003)		
		information centrality	modularity	$O(V E ^{3})$
		(Fortunato et al., 2004)		
agglomerative		modularity oriented	modularity	O(V E)
		(Newman, 2004)		

Evaluation:

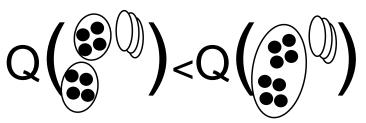
 rating system clustering on gold clustering
 Are there any formal constraints (properties, criteria) that an ideal evaluation measure should satisfy?

Four Formal Constraints (Amigo et al., 2008) :

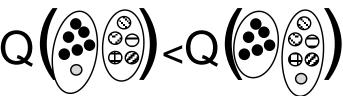
homogeneity

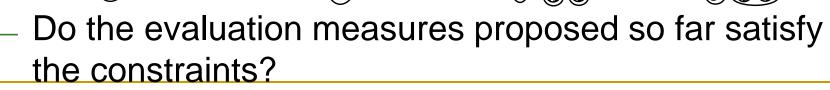


completeness



rag bag





Evaluation Measures

Measure Family	Measures	Comment
Measures Based on Set Mapping	Purity (Zhao and Karypis, 2001) Inverse purity F-measure	purity and inverse purity are easy to cheat, F-measure has a "matching" problem
Measures Based on Pair Counting	Rand index (Rand, 1971) Adjusted rand index (Hubert and Arabie, 1985) Jaccard Coefficient (Milligan et al., 1983) Folks and Mallows FM (Fowlkes and Mallows, 1983)	
Measures Based on Entropy	Entropy Mutual information (Xu et al., 2003) Variation of information (VI) (Meila, 2003) V-Measure (Rosenberg and Hirschberg, 2007)	entropy is easy to cheat, VI and V capture homogeneity and completeness
Measures Based on Editing Distance	Editing distance (Pantel and Lin, 2002)	
Measures for Coreference Resolution	MUC F-measure (Vilain et al.,1995) B-Cubed F-measure (Bagga and Baldwin, 1998) ECM F-measure (Luo, 2005)	

Summary of Part I

- Hypothesis serves as a basis for the whole graph clustering methodology
- Modeling acts as the interface between the real application and the methodology
- Quality measures and graph clustering algorithms construct the backbone of the methodology
- Evaluation deals with utility

Part II Applications:
Coreference Resolution
Word Clustering
Word Sense Disambiguation

Entity coreference resolution

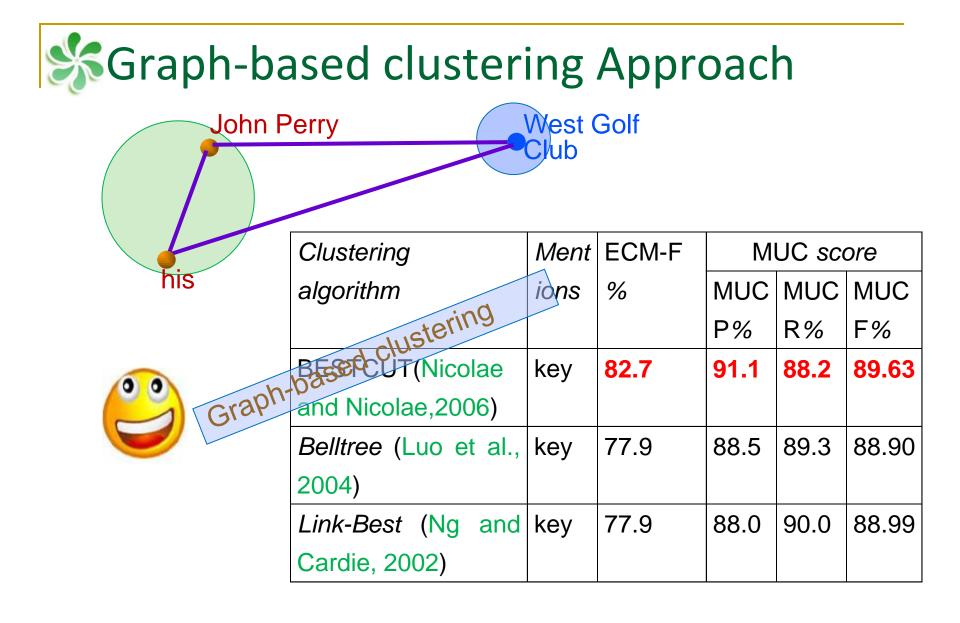
John Perry, of Weston Golf Club, announced his resignation yesterday.

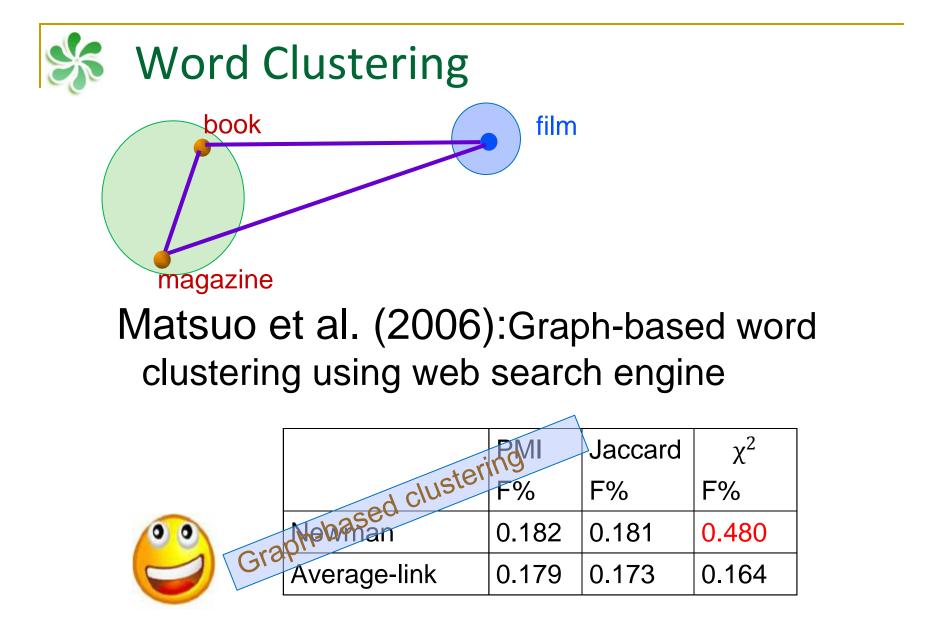
Event coreference resolution

^{EM1}An explosion in a cafe at one of the capital's busiest intersections killed one woman and injured another Tuesday.

EM2 The explosion comes a month after

EM3 a bomb exploded at a McDonald's restaurant in Istanbul, causing damage but no injuries .





Sourd Sense Disambiguation

Agirre et al. (2007) :Two graph-based algorithms for state-of-the-art WSD

	tering	Sup.	Ur	Unsupervised	
	d clustering Vr Vr_opt Pr_fr	Rec.	Entr.	Pur.	FS
h hase	VI	59.9	50.3	58.2	44.1
Graphin	Vr_opt	64.6	18.3	78.5	35.0
L	Pr_fr	64.5	18.7	77.2	34.3
	Pr_fx	62.2	25.4	72.2	33.3
celir	Plex-1hub	40.1	0.0	100.0	14.5
Two baselin Supervised	MFS	54.5	53.2	52.8	28.3
	S3LS-best	72.9	19.9	67.3	63.8
	kNN-all	70.6	21.2	64.0	60.6
nervise	kNN-BoW	63.5	22.6	61.1	57.1
SUP	Cymfony (10%-S3LS)	57.9	25.0	55.7	52.0
	Prob0 (MFS S base	54.2	28.8	49.3	46.0
	clr04 (Mrapsc)	48.8	25.8	52,5	46.2
	clr04 (MFS-Sc) Cronenso (MFS-Sc) datuth-sensere late	48.7	28.0	50.3	48.8
orvis	datuth-sensere late	47.5	27.2	51.1	44.9
. INE .		•			

S3AW task

τ	recall
kuaw 🗌	70.9
Pr_fr	70.7
Vr_opt	70.1
GAMBL	70.1
MFS	69.9
LCCaw	68.6

Graph: elegant, with solid mathematical foundations

Non-graph clustering algorithm: act greedily towards the final clustering

Graph clustering algorithm: seek global "optimal" by optimizing some quality measure

Issue of running complexity and scalability