Eliminating Redundancy by Spectral Relaxation for Multi-Document Summarization

F. Fukumoto, A. Sakai and Y. Suzuki Univ. of Yamanashi

Graph-based multi-document summarization

- LexPagerank (Erkan and Radev, 2004)
- PageRank and HITS (Mihalcea and Tarau, 2005)
 - □ Constructing graph consisting nodes and links
 - □ Applying graph-based ranking algorithm
 - □ Chose the sentences with large rank score into the summary
- All the sentences are ranked based on a sentence as unit of information.
- Semantically related two sentences with "high recommendation" are ranked with high score, and thus are regarded as a summary sentence.

The resulting summary still contains overlapping info.

Cluster-based Multi-document Summarization

- ClusterCMRW model (X.Wan et al)
 - Classifying documents into theme clusters by using k-means
 - Constructing a graph to reflect the relationships between sentences and clusters by using MRW model
- Spectral Clustering (Weiss et al)
 - A transformation of the original sentences into a set of orthogonal eigenvectors.

Sentence extraction by ClusterCMRW

1. Weight between two sentences, conditioned on the two clusters containing the two sentences.

 $clus(s_i)$

$$f(i \rightarrow j | clus(s_i), clus(s_j)) = f(i \rightarrow j) \cdot \{\lambda \cdot \pi(clus(s_i)) \cdot \omega(s_i, clus(s_i)) + (1 - \lambda) \cdot \pi(clus(s_j)) \cdot \omega(s_j, clus(s_j))\}$$

$$\pi(clus(s_i)) = sim_{cosine}(clus(s_i), D)$$
$$\omega(s_i, clus(s_i)) = sim_{cosine}(s_i, clus(s_i))$$

$$\pi(clus(s_i))$$
: The importance of the cluster $clus(s_i)$
in the document set D

 $\omega(s_i, clus(s_i))$: The correlation between the sentence s_i and its cluster $clus(s_i)$

Sentence extraction by ClusterCMRW

2. The transition probability from s_i to s_j

$$p(i \rightarrow j \mid clus(s_i), clus(s_j)) = \frac{f(i \rightarrow j \mid clus(s_i), clus(s_j))}{\sum_{k=1}^{|V|} f(i \rightarrow k \mid clus(s_i), clus(s_j))}$$

3. The final transition matrix \tilde{M}_{ij}

$$\widetilde{M}_{ij} = p(i \to j | clus(s_i), clus(s_j))$$
$$\vec{\lambda}^* = \mu \widetilde{M}^{*T} + \frac{(1 - \mu)}{|V|} \vec{e} \vec{e}^T$$

Sentence Classification by Spectral Clustering

2. Feature space and sentence classification

• D is transformed to an affinity matrix Aij $A_{ij} = \begin{cases} \exp\left(-\frac{D_{ij}^{2}}{2\sigma^{2}}\right) & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$ • Create a diagonal matrix B $B_{ii} = \sum_{j=1}^{n} A_{ij}$ • Create L $L = B^{-1/2} A B^{-1/2}$

- Each item has a vector of I coordinates in the transformed space.
- These vectors are normalized to unit length, and K-means is applied to S in I-dimensional space.

Multi-document summarization by ClusterCMRW

Experiments 1. Data

Source data	NTCIR-3 SUMM FBFREE DryRun and FormalRun (1998-1999 Japanese newspapers)		
# of topics	30		
# of sentences / doc	30 to 350 sentences		
Ext. of sentences	NTCIR-3 SUMM FBFREE Long and short according to the character length		
# of clusters	The square root of the number of sentences		

Experiments

- 2. Two evaluation measures:
 - Cosine similarity between the generated summary by the system and the human generated summary
 - ROUGE score used in DUC

$$ROUGE = \frac{\sum_{S \in \{\text{Re } fSum \} word \in S} Count}{\sum_{S \in \{\text{Re } fSum \} word \in S} Count} (word)$$

Parameter estimation used in the spectral clustering

- 10 topics to estimate two parameters σ and / in the *I*-dimensional space
 - $\Box \sigma$ is searched in steps of 0.01 from 1.0 to 5.0
 - □ / is searched in steps 10% from 0 to 80% against the total number of words in the training data
 - The size that optimized the average F-score of 10 topics was chosen
 - σ is set to 4.5
 - / is set to 80%

Summarization Results

	# of doc	# of sent	# of sum	COS			ROUGE		
				MRW	K- means	Sp	MRW	K- means	Sp
short	7.5	83.0	11.9	0.431	0.575	0.632	0.330	0.334	0.360
long			20.4	0.371	0.408	0.477	0.180	0.186	0.209

- Sp outperformed the baselines, MRW and k-means, regardless of the types of summary, and evaluation measures
- Short was better than long. The rank score of correct sentences within the candidate sentences obtained by the MRW model works well.

Sentence Similarities within a summary

	# of doc	# of sent	# of sum	Similarity within a summary sentences					
				Human	MRW	K- means	Sp		
short	7.5	83.0	11.9	0.129	0.137	0.142	0.132		
long			20.4	0.173	0.283	0.201	0.193		

of sentences vs ROUGE score

 SP is more robust than k-means and simple MRW model even for a large number of input sentences

of k vs ROUGE score

- Sp outperformed the results obtained by directly applying MRW.
- The results by k-means was worse than the results of MRW when the ratio of the # of cluster k against the # of sentences as an input was larger than 80%. For a large number of topics, k-means is not effective.

Conclusion

- A method to detect salient sentences from documents that discuss the same event
- 10.6% improvement over a baseline MRW (cosine), and 2.9% (ROUGE score)
- Applying the method to the DUC evaluation data
- Extending the method to classify sentences into more than one clusters by using soft-clustering techniques