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Graph-based multi-document 
summarization
 LexPagerank (Erkan and Radev,2004)
 PageRank and HITS (Mihalcea and Tarau,2005)

 Constructing graph consisting nodes and links
 Applying graph-based ranking algorithm
 Chose the sentences with large rank score into the summary

All the sentences are ranked based on a sentence as unit of 
information.

Semantically related two sentences with “high recommendation” are 
ranked with high score, and thus are regarded as a summary 
sentence.

The resulting summary still contains overlapping info.
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Cluster-based Multi-document 
Summarization 

 ClusterCMRW model (X.Wan et al)
 Classifying documents into theme 

clusters by using k-means
 Constructing a graph to reflect the 

relationships between sentences and 
clusters by using MRW model

 Spectral Clustering (Weiss et al)
 A transformation of the original 

sentences into a set of orthogonal 
eigenvectors.

cluster
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Sentence extraction by ClusterCMRW
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1. Weight between two sentences, conditioned on the two clusters 
containing the two sentences.
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Sentence extraction by ClusterCMRW
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ClusterCMRW model 
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2/12/1  ABBL

Sentence Classification by Spectral Clustering
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 Each item has a vector of l coordinates 
in the transformed space.

 These vectors are normalized to unit length, and
K-means is applied to S in l-dimensional space.

Multi-document summarization
by ClusterCMRW

Word freq.
Multi-doc.

Euclid distance1. Form a distance matrix D

2. Feature space and sentence classification
Create a diagonal matrix B

Create L

D is transformed to an affinity matrix Aij
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w1  w2  w3  w4

1 0    1      1 
1 0    1      0 
1 1    1      0 
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Experiments

NTCIR-3 SUMM FBFREE
Long and short according to the character 

length

Ext. of sentences

NTCIR-3 SUMM FBFREE DryRun and 
FormalRun (1998-1999 Japanese 

newspapers)

Source data

30# of topics

30 to 350 sentences
# of sentences / 

doc

The square root of the number of 
sentences# of clusters

1. Data
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Experiments
2. Two evaluation measures: 

• Cosine similarity between the generated 
summary by the system and the human 
generated summary

• ROUGE score used in DUC
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Parameter estimation used in the 
spectral clustering

 10 topics to estimate two parameters σ and l in 
the l-dimensional space
σis searched in steps of 0.01 from 1.0 to 5.0
 l is searched in steps 10% from 0 to 80% against the 

total number of words in the training data

 The size that optimized the average F-score of 10 
topics was chosen
 σ is set to 4.5
 l is set to 80%
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Summarization Results

 Sp outperformed the baselines, MRW and k-means, 
regardless of the types of summary, and evaluation 
measures

 Short was better than long. The rank score of correct 
sentences within the candidate sentences obtained by 
the MRW model works well.
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Sentence Similarities within a summary
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# of sentences vs ROUGE score

 SP is more robust than k-means and simple MRW model
even for a large number of input sentences
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# of k vs ROUGE score

 Sp outperformed the results obtained by directly applying MRW.
 The results by k-means was worse than the results of MRW when the ratio 

of the # of cluster k against the #  of sentences as an input was larger than 
80%. For a large number of topics, k-means is not effective.
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Conclusion

 A method to detect salient sentences from 
documents that discuss the same event

 10.6% improvement over a baseline MRW 
(cosine), and 2.9% (ROUGE score)

 Applying the method to the DUC evaluation data
 Extending the method to classify sentences into 

more than one clusters by using soft-clustering 
techniques 


