Distributed Representations of Geographically Situated Language

David Bamman Chris Dyer Noah A. Smith

Presenter: Konstantinos Pappas
“Who?”

David Bamman
Assistant Professor

Chris Dyer
Assistant Professor

Noah Smith
Associate Professor

[Logos of the universities: University of California, Berkeley, Carnegie Mellon University, University of Washington]
1. Incorporate contextual information (geography) in learning vector-space representations of situated language.
- contextual variable: 51 US states
- dataset: 93M tweets - 1B words
- representation: embeddings (Mikolov et al. 2013)
- evaluation: qualitatively (manual inspection) and quantitatively (semantic similarity)
“WHY?” #1
“WHY?” #2

In particular, how is a word’s meaning shaped by its geography?
Distributional hypothesis

Words that occur in similar contexts tend to have similar meanings (Harris, 1954; Firth, 1957; Deerwester et al., 1990). If words have similar row vectors in a word-context matrix, then they tend to have similar meanings.

1-modal learning:
- textual context
You shall know a word by the company it keeps . . .
Firth (1957)

Multimodal learning:
- object info e.g. visual cues
- speaker info e.g. location
An extension of the “skip-gram” model (Mikolov et al. 2013)

Defines a set of contextual variables:
Cstate = (AK, AL, ..., WY)
Model details

One global embedding matrix W.

Another 51 matrices which capture the effect that each variable value has on each word in the vocabulary.

Each deviation indicates how that common representation should shift in the k-dimensional space when used in each state.

Backpropagation, L2 regularization.
IMPLEMENTATION

github: https://github.com/dbamman/geoSGLM

GeoSGLM: Code for learning geographically-informed word embeddings.

To run, adjust the input/output parameters in run.sh and execute it.
<table>
<thead>
<tr>
<th>id</th>
<th>location</th>
<th>message</th>
</tr>
</thead>
<tbody>
<tr>
<td>480326347508969000</td>
<td>PA</td>
<td>There is a great research question in how long a sequence of blog comments can go before it descends into madness http://t.co/NFqKgaZRuO</td>
</tr>
<tr>
<td>472023364908118000</td>
<td>PA</td>
<td>So much easier than hunting through individual websites: using Google Scholar to get BibTeX citations http://t.co/H2inkMGMom</td>
</tr>
<tr>
<td>105039889808109000</td>
<td>PA</td>
<td>Just discovered Conflict Kitchen in Pittsburgh - brilliant idea that needs to catch on in other cities. http://t.co/FkSLGD9</td>
</tr>
</tbody>
</table>
The vocab file contains the maximal set of words to learn representations for.

If a word is not in this list, then don't learn a representation for it.

This list is further filtered in the code to only include words that are seen at least 5 times in the data, and a maximum of the MAXVOCAB most frequent terms.
ETC

FEATUREFILE=data/states.txt

OUTFILE=data/out.embeddings

DIMENSIONALITY=100
Dimensionality specifies the size of the learned word representations.

L2=0.0001
L2 regularization parameter.
Similarity

For a given query q, you can view the terms most similar to q in all 51 states using scripts/findNearest.py

python scripts/findNearest.py $OUTFILE
Qualitative Analysis #1

<table>
<thead>
<tr>
<th>Kansas</th>
<th>Massachusetts</th>
</tr>
</thead>
<tbody>
<tr>
<td>term</td>
<td>cosine</td>
</tr>
<tr>
<td>wicked</td>
<td>1.000</td>
</tr>
<tr>
<td>evil</td>
<td>0.884</td>
</tr>
<tr>
<td>pure</td>
<td>0.841</td>
</tr>
<tr>
<td>gods</td>
<td>0.841</td>
</tr>
<tr>
<td>mystery</td>
<td>0.830</td>
</tr>
<tr>
<td>spirit</td>
<td>0.830</td>
</tr>
<tr>
<td>king</td>
<td>0.828</td>
</tr>
<tr>
<td>above</td>
<td>0.825</td>
</tr>
<tr>
<td>righteous</td>
<td>0.823</td>
</tr>
<tr>
<td>magic</td>
<td>0.822</td>
</tr>
</tbody>
</table>

Table 1: Terms with the highest cosine similarity to *wicked* in Kansas and Massachusetts.
Qualitative Analysis #2

<table>
<thead>
<tr>
<th></th>
<th>California</th>
<th>New York</th>
</tr>
</thead>
<tbody>
<tr>
<td>term</td>
<td>cosine</td>
<td>term</td>
</tr>
<tr>
<td>city</td>
<td>1.000</td>
<td>city</td>
</tr>
<tr>
<td>valley</td>
<td>0.880</td>
<td>suburbs</td>
</tr>
<tr>
<td>bay</td>
<td>0.874</td>
<td>town</td>
</tr>
<tr>
<td>downtown</td>
<td>0.873</td>
<td>hamptons</td>
</tr>
<tr>
<td>chinatown</td>
<td>0.854</td>
<td>big city</td>
</tr>
<tr>
<td>south bay</td>
<td>0.854</td>
<td>borough</td>
</tr>
<tr>
<td>area</td>
<td>0.851</td>
<td>neighborhood</td>
</tr>
<tr>
<td>east bay</td>
<td>0.845</td>
<td>downtown</td>
</tr>
<tr>
<td>neighborhood</td>
<td>0.843</td>
<td>upstate</td>
</tr>
<tr>
<td>peninsula</td>
<td>0.840</td>
<td>big apple</td>
</tr>
</tbody>
</table>

Table 2: Terms with the highest cosine similarity to *city* in California and New York.
Quantitative evaluation - Set up

7 categories

1. city - most populous city/state
2. state - state name
3. football - NFL team names
4. basketball - NBA team names
5. baseball - MLB team names
6. hockey - NHL team names
7. park - US national parks

3 models

1. Joint: global representation for each word + a deviation per state
2. Individual: each state one model
3. -GEO: one model from the whole US
Average cosine similarity for all models across all categories, with 95% confidence intervals on the mean.
The paper provides an extension to vector-space representations that can take into account the context in which it is uttered.

Implements three models: joint, individual, normal.

Provides two different kinds of evaluation of the models.

Discusses possible extensions and applications of this tool.
NOTES

- ACL 2014 (+)
- Mentions that this tool for revealing periodic and historical influences on lexical semantics, but provides no evidence (-)
- Provides online implementation of the system (+)
Questions

Can we realistically find enough data for each contour that we are interested? E.g. a particular year?

How can these new embeddings be used for IR?

Would it make sense to create different embeddings per gender? Per age of author?