MultiLevel Linguistic Graphs for Knowledge Extraction

Vincent Archer
Motivation

• NLP: Low-quality results
 – Ambiguities, particular phenomena
• Lack of linguistic (lexical) resources
 – Focus: extraction of lexical information
 • Computer scientist POV
 – Should be produced quickly and precisely
 – We must combine human and machine abilities
• Need: Generic tools
• Make lexical extraction easier

• MuLLinG model

• Application: collocation extraction
Difficult Programming

- Resource management (add a new one?)
 - Often data-dependent
- Need a 2nd ability (linguistics)
Separation of tasks - Generic tools

- Requires less knowledge in programming
- Easier to add a new resource
What kind of model?

- Simple representation of data
 - Expressive (able to model complex data)
 - Generic (corpora, dictionaries, etc.)
- Simple generic operations
 - Task- and data-independant
 - High-level
 - Combine simple operations, rather than write a complex one
- => Graphs
 - Relations (juxtaposition, dependency, etc.)
 - Easy to understand/handle, widely used in NLP
MuLLinG: MultiLevel Linguistic Graph

- Levels = different views
- Grouping by *equivalence classes*
 - 1 class = 1 node at superior level
 - Level hierarchy
 - Interlevel edges
 - Between a node and its class
- Attributes are free
 - No constraint on the data
Associated operations

- Modifying the graph:
 - Parameters: level, filtering function, attribute computation functions (for nodes/edges)
 - Given by the user
 - *Emergence* creates a new level
- Union, intersection, difference of graphs
 - Based on identity of nodes/edges
- Basic:
 - Add/delete edge, node (and its descent)
 - Conditional application
 - Measure computation
Relations not always binary
1 relation =
- 1 (standard) node materializing the relation
- + numbered argument edges
(operators are adapted)
Experiment: collocation extraction

- Collocation (« Driving rain ») = semi-fixed
 - One term is chosen arbitrarily
 - In function of the other one
 - To express a particular meaning
 - Problem for translation

- Initial graph:
 - Dependencies produced by the parser (XIP)
Collocation extraction

- *Emergence* produces the superior level
 - Operation based on equivalence classes
 - Before: relations between objects
 - After: (grouped) relations between grouped objects
 - Parameters:
 - Level, filter, attribute computation
 - + function identifying the class of a node/edge

- Filtering relations:
 - Removing nodes
Collocation extraction

Node emergence

• 1 node = 1 equivalence class
 – Linked to nodes (at inferior level) elements of the class

```plaintext
NodeEmergence(1, true, Class_Lemma_pos(), CompAttrNode() //<id, idclass>
    <type, "term">
    <nboccs, incr>
)
```
Collocation extraction

Edge emergence

- 1 edge between A and B = 1 set of edges
 - Between an element from class A, and an element from class B
 - Equivalent

```csharp
EdgeEmergence(1, true, Class_Type(), CompAttrEdge(), //<id, idclass>
  <type, "classmod"> <nboccs, incr>
CompAttrSource(), //<d+, incr>
CompAttrTarget() ) //<d-, incr>
```
Collocation extraction
Measure computation

- Using values previously computed
 - Number of (co-)occurrences, in/out degree...
- Candidates:
 level2 edges

```python
ComputeMeasure(
    WMI(),
    //association measure
    is_classmod(),
    "measure",
    //where to write (result)
    "nboccs",
    "nboccs",
    //where to read
    NumberSentences
...)
```
Observations

- Coherent results
- Mulling (open-source C++ library)
 - http://mulling.ligforge.imag.fr
 - In/out file format: GraphML
 - ~70 lines (calls)
 - vs. Ad hoc: ~400 lines (iterations on the data)
 - Much faster description / Avoid programming errors
 - Import: ~250 lines (vs. 200 lines ad hoc)
- Execution quite slower
 - less optimized
- Generic: reusable with any kind of relation
Future works

• Library usability
 – Import
 – High-level (request) language
 – Graphic interface
 – Memory: use databases (+cache) to store large graphs

• Graph clustering

• Applications to other graphs
 – Less NLP-centered
 – Semantic web (RDF/SPARQL)
 – Social networks