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Abstract. Natural language processing methods have been applied in
a variety of music studies, drawing the connection between music and
language. In this paper, we expand those approaches by investigating
chord embeddings, which we apply in two case studies to address two key
questions: (1) what musical information do chord embeddings capture?;
and (2) how might musical applications benefit from them? In our analy-
sis, we show that they capture similarities between chords that adhere to
important relationships described in music theory. In the first case study,
we demonstrate that using chord embeddings in a next chord prediction
task yields predictions that more closely match those by experienced mu-
sicians. In the second case study, we show the potential benefits of using
the representations in tasks related to musical stylometrics.

Keywords: Chord Embeddings · Representation Learning · Musical Ar-
tificial Intelligence.

1 Introduction

Natural language processing (NLP) methods such as classification, parsing, or
generation models have been used in many studies on music, drawing the con-
nection that music is often argued to be a form of language. However, while
word embeddings are an important piece of almost all modern NLP applica-
tions, embeddings over musical notations have not been extensively explored.
In this paper, we explore the use of chord embeddings and argue that it is yet
another NLP methodology that can benefit the analysis of music as a form of
language. Our objectives are (1) to probe embeddings to understand what mu-
sical information they capture, and (2) to demonstrate the value of embeddings
in two example applications.
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Using word2vec [18] to create embeddings over chord progressions, we first
perform qualitative analyses of chord similarities captured by the embeddings
using Principal Component Analysis (PCA). We then present two case studies
on chord embedding applications, first in next-chord prediction, and second in
artist attribute prediction. To show their value, we compare models that use
chord embeddings with ones using other forms of chord representations.

In the next chord prediction study, we provide a short chord sequence and
ask what the next chord should be. We collected human annotations for the
task as a point of reference. By comparing model predictions with the human
annotations, we observe that models using chord embeddings yield chords that
are more similar to the predictions of more experienced musicians. We also mea-
sure the system’s performance on a larger set drawn from real songs. This task
demonstrates a use case for chord embeddings that involves human perception,
interaction, and composition. For the artist attribute prediction study, we per-
form binary classification tasks on artist type (solo performer or group), artist
gender (when applicable), and primary country of the artist. Results on these
tasks demonstrate that chord embeddings could be used in studies of musical
style variations, including numerous studies in musicology.

This paper contributes analyses of the musical semantics captured in chord2vec
embeddings and of their benefits to two different computational music applica-
tions. We find that the embeddings encode musical relationships that are im-
portant in music theory such as the circle-of-fifths and relative major and mi-
nor chords. The case studies provide insight into how musical applications may
benefit from using chord embeddings in addition to NLP methods that have
previously been employed.

2 Related Work

Methods for learning word embeddings [18, 22, 23, 4] have been useful for do-
mains outside of language (e.g., network analysis [7]). Recent work has explored
embeddings for chords, including an adaptation of word2vec [15], their use in a
chord progression prediction module of a music generation application [3], and
for aiding analysis and visualization of musical concepts in Bach chorales [24].
However, understanding the musical information captured as latent features in
the embeddings has been limited by the decision to ground evaluation in lan-
guage modeling metrics (e.g., perplexity) rather than analyses of their behavior
in downstream tasks. In this work, our first case study shows that language
models with no remarkable differences in performance by perplexity exhibit re-
markable relationships in their predictions to the experience of musicians, and
furthermore we provide insights into what is captured by the embeddings.

NLP methods have benefited computational musicology topics such as au-
thorship attribution [30], lyric analysis [6], and music classification tasks using
audio and lyrics [16]. In the task of composer identification, many approaches
draw inspiration from NLP, applying musical stylometry features and melodic
n-grams [2, 31, 8]. One study used language modeling methods on musical n-
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grams to perform composer recognition [10] and another used a neural network
over encodings of the pitches of musical pieces [12]. Similar methods have been
used to study stylistic characteristics of eight jazz composers [19, 1] over chord
sequences similar to ours. While these studies operated on small datasets (on
the order of hundreds of samples) to identify and analyze music of a small set of
musicians, we use a large dataset (on the order of tens of thousands) and predict
attributes of artists based on the music.

Our attribute prediction tasks are related to NLP work in authorship attribu-
tion and are motivated by studies on the connection between language and music
in psychology [21, 11], and the intersection of society, music, and language, or
sociomusicology [5, 28]. For instance, Sergeant & Himonides studied the percep-
tion of gender in musical composition, and found no significant match between
the listener’s guess of a composer’s gender and their actual gender [27].

3 Dataset

We compile a dataset of 92,000 crowdsourced chord charts with lyrics from the
Ultimate Guitar website.4 We identify and remove duplicate songs5 in our data
using Jaccard similarity, then extract the chord progressions from our data rep-
resentation to learn chord embeddings.
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Fig. 1. Number of chords in the dataset and a fitted trendline with the parameters
given in the figure for the 61 most common chords, showing a power law distribution.
A sample of chords are labeled that also appear in the embedding visualization in
Figure 4.

We remove songs with fewer than six chords, leaving us with a final set of
88,874 songs and 4,913 unique chords. The chords’ song frequencies are dis-
tributed according to a power law distribution, much like Zipf’s word frequency
law exhibited in natural language. Figure 1 shows the song frequency and the
power law trend line fitted to the top 61 chords for demonstration, though the

4 https://www.ultimate-guitar.com/
5 Sometimes multiple users submit chord charts for a song.
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trend is even stronger over all chords. Beyond there existing many possible chord
notations, we observe a relation between chord frequency and physical difficulty
of playing the chord on the guitar or other instruments (e.g., G, C, and D), and
variations in notation.

4 Chord Embeddings

Word embeddings have been used extensively to represent the meaning of words
based on their use in a large collection of documents. We consider a similar
process for chords, forming representations based on their use in a large collection
of songs.

We create chord embeddings for chords that appear in at least 0.1% of our
songs (237 chords) using the continuous bag of words model (CEcbow) and the
skip-gram language model (CEsglm) from word2vec [18], a widely used method
for creating word embeddings. For CEcbow, a target chord is predicted based on
context chords, while CEsglm is the reverse: context chords are predicted given a
target chord. In both cases, this has the effect of learning representations that
are more similar for chords that appear in similar contexts. We tested context
sizes of two, five, and seven, and varied the vector dimensions between 50, 100,
200, and 300, but observed only minor differences across different models, and
chose to use a context window of five and a vector dimension of 200.

4.1 Qualitative Analyses

To better understand the information encoded in chord embeddings, we perform
a qualitative analysis using PCA and present a 2D projection for the CEsglm
model in Figure 4 (our main observations are consistent for the case of CEcbow).

We observe that chords that form a fifth interval are closer together, which
suggests that the embeddings capture an important concept known as the circle
of fifths. Fifth-interval relationships serve broad purposes in tonal music (music
that adheres to a model of relationships to a central tone). Saker [26] encapsulates
their structural importance by stating that “circle of fifths relationships domi-
nate all structural levels of tonal compositions” and that “the strongest, most
copious harmonic progressions to be found in tonal music are fifth related.” The
circle of fifths relationship is observed in our chord embeddings over different
chord qualities,6 specifically over major chords (highlighted in Figure 4b), minor
chords (highlighted in Figure 4c), major-minor 7 chords, and minor 7 chords.
For both chord qualities, the layout captured by the chord embeddings is similar
to the ideal/theoretical circle of fifths, illustrated in Figure 4a. This pattern is
particularly interesting as it does not follow the style of word analogy patterns

6 Qualities refers to sound properties that are consistent across chords with different
roots but equidistant constituent pitches. The interaction of intervals between pitches
determines the quality.
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(a) (b)

(c) (d)

Fig. 2. In (a), we show the circle of fifths with the same colors as in (b), (c) and (d),
which show the same 2-dimensional PCA projection of the chord embedding space with
lines denoting the circle of fifths over major chords (b) and minor chords (c), and lines
denoting major-minor relatives (d).

observed in language. This makes sense, as the “is-a-fifth” relation forms a cir-
cle in chords, whereas word analogies connect pairs of words without forming a
circle.

Additionally, we observe that relative major and minor chords7 appear rela-
tively close together in the embedding space, as shown by their proximity in the
PCA plots (highlighted in Figure 4d). We also observe that enharmonics, notes
with different names but the same pitch, are often close together. Not only that,
but there is a consistent pattern in the positioning of enharmonics, with sharps
to the left and flats to the right.

7 Relative refers to the relation between the chords’ roots, in which the scale beginning
on the minor chord’s root shares the same notes as the scale beginning on the major
chord’s root, but the ordering of the notes give different qualities to the scales.
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These observations suggest that chord embeddings are capable of represent-
ing musical relationships that are important to music theory. Transitions between
the tonic (I), dominant (V), and subdominant (IV) chords of a scale are prescrip-
tive components in musical cadences [25]. Since these chords frequently appear
in the same context, their embeddings are more similar. A common deceptive
cadence is a transition between the fifth and sixth root chords of a scale [20].
An example progression with a deceptive cadence in C major is C-F-G-Am; these
chords appear in a similar neighborhood in the PCA plots. Because these chords
frequently co-occur in music, the embeddings capture a relationship between
them.

We also note that relationships for chords that are used more frequently are
more strongly represented. The major and minor relative pairs (G, Em), (C, Am),
and (D, Bm), are among the top ten chords ranked by song frequency (Figure 1)
and have clear relations in Figure 4. In contrast, the pairs (Ab, Fm) and (Db, Bbm)
are ranked lower and their minor-major relative relationship appears weaker by
their distance.

4.2 Alternative Representations

In addition to chord embeddings, we also explore two other chord representa-
tions: Pitch Representations (PR) and Bag-of-Chords (BOC). For a fair compari-
son, we use the same vocabulary of 237 chords for these representations.

Pitch Representations. A chord’s identity is determined by its pitches, so we
test if the individual pitches provide a better representation of a chord as a whole
than our chord embeddings. This method represents each chord by encoding each
of its pitches by their index in the chromatic scale {C = 1, C# = 2, · · · , B = 12}.
The pitches are in order of the triad, followed by an additional pitch if marked,
and by one extra dimension for special cases.8 Additional pitches are indicated
by the interval relative to the root of the pitch that is being added. We also
represent chord inversions, e.g., the chord G/B which is an inversion of G such
that the bottom pitch is B.

Bag-of-Chords. In this representation, each chord is represented as a “one-hot”
vector, where the vectors have length equal to the vocabulary size. We consider
two ways of determining the value for a chord. For BOCcount, we use the frequency
of a chord in a song, divided by the number of chords in the song. For BOCtfidf ,
we use the TF-IDF of each chord (term-frequency, inverse document frequency).

5 Case Study One: Next Chord Prediction

In this section, we present our first case study, which investigates if there is
a relationship between chord embedding representations and the ways humans

8 Special cases include: the “*” marking on a chord, which is a special marker specific
to the ultimate-guitar.com site; “UNK” which we use to replace chords that do not
meet the 0.1% document frequency threshold; and “H” and “Hm” which indicates
“hammer-ons” in the notation on ultimate-guitar.com
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perceive and interact with chords. We test the use of chord representations for
predicting the most likely next chord following a given sequence of chords, and
then compare these to human-annotated responses.

We train a next chord prediction model using a long short-term memory
model [9] (LSTM).9 We follow standard practice and do not freeze the embed-
dings, meaning the chord representations undergo updates throughout training,
adjusting to capture the musical features most important for the task. Our main
model uses the pre-trained chord embeddings to initialize the chord prediction
architecture. We test both CEcbow and CEsglm embeddings, and will refer to these
models by these acronyms. We also define a baseline model, where the encoder is
randomly initialized (denoted NI, for no initialization). Finally, we also evaluate
a model where we initialize the encoder with the pitch representations introduced
in Section 4.2 (denoted PR).

We divide our data into three sets, with 69,985 songs (80%) for training,
8,748 songs (10%) for validation, and 8,748 (10%) for testing. We train using
a single GPU with parameters: epochs = 40, sequence length = 35, batch size
= 20, dropout rate = 0.2, hidden layers = 2, learning rate = 20, and gradient
clipping = 0.25.

5.1 Human Annotations

To evaluate the next chord prediction models, we collect data with a human
annotation task in which annotators are asked to add a new chord at the end
of a chord progression. For example, given the progression “A, D, E,” they must
pick a chord that would immediately follow E. They are also asked to pick one
or two alternatives to this selection. Continuing the example, if an annotator
provides E7 and A, then the chord progressions they have specified are “A, D, E,
E7,” and “A, D, E, A.” The annotators are given a tool to play 48 different chords
(all major, minor, major-minor 7, and minor 7 chords) so they can hear how
different options would sound as part of the progression.10 They were given a
total of 39 samples shown in the same order to all annotators. The samples were
chosen randomly from our entire dataset of songs, permitting only one sequence
to come from a single song, and requiring they contain the same 48 chords. We
presented sequences of length three and six as we expect that patterns in the
given sequence affect the responses.

Participants. The annotators were first asked to estimate their expertise in
music theory on a scale from 0 - 100, where 0 indicates no knowledge of music
theory, 25 - 75 indicates some level of knowledge from pre-university training
though self-teaching, private lessons/tutoring, or classroom settings, and 75 - 100
indicates substantial expertise gained by formal university studies, performing
and/or composing experience. They were given the option to provide comments
about how they estimated their expertise. We collected this information because

9 We use an open-source repository of neural language models https://github.com/

pytorch/examples/blob/master/word_language_model/model.py
10 We did not limit our next chord prediction models to these 48 chords.
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we expected that the annotations provided by a participant may vary depending
on their background education in music theory. It also allows us to perform
comparisons of our system with sub-groups defined by self-reported knowledge.
Nine participants provided complete responses, with expertise ratings of 0, 0,
10, 10, 19, 25, 25, 50 and 73. For the following analyses, we define a beginner set
containing annotators who provided 0 for their self-rating, an intermediate set
containing annotators with ratings > 0 and < 50, and an expert set containing
annotators whose ratings are at least 50.

Inter-annotator Agreement. For pairwise agreement, we compute the pro-
portion of chord progressions in which a pair of annotators provided the same
chord, averaged over all pairs of annotators. The pairwise agreement across all
annotators is 22.51, it is 23.08 for the beginner set, 25.38 for the intermediate
set, and 17.95 for the expert set.

To account for responses of similar but not identical chords (discussed in Sec-
tion 5.2), we measure pairwise agreement on response pitches. We compute the
fraction of matching pitches for a pair of annotators’ responses for a given chord
progression, averaged over all pairs of annotators. The pairwise pitch agreement
score for all annotators is 38.00, it is 37.01 for the beginner set, 40.90 for the
intermediate set, and 33.59 for the expert set. The average number of unique
chords used by each annotator is 30.2, it is 35.5 for the beginner set, 27.4 for
intermediate set, and 32.0 for the expert set.

5.2 Evaluation Metrics

The main objective of this case study is to investigate whether chord similarities
captured by our embeddings reflect human-perceived similarities. We use the
chord-prediction systems to perform the same task given to the annotators. Each
model provides a probability distribution over the full set of chords, therefore
we treat the chords with highest probabilities as each model’s selection.

We evaluate the predictions with the following metrics, which are inspired
by the metrics employed by the Lexical Substitution task [17] but modified for
our setup, which weight more frequent responses higher:

Matchbest: For each example we calculate the fraction of people who included
the model’s top prediction in their answer. These values are then averaged over
all examples.

Matchoo4: This adds together values for the previous metric across the model’s
top four predictions.

Modebest: The fraction of cases in which the top model prediction is the same
as the most common annotator response, when there is a single most common
response.

Modeoo4: The fraction of cases in which one of the top four model predictions
is the same as the most common annotator response.

Note that only 25 out of the 39 examples had a unique most common re-
sponse. Of these, 20 had a chord chosen by three or four annotators, and five
had a chord chosen by five to seven annotators. The rest of the examples are not
considered in the Mode metrics.
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Pitch Matches: The metrics above penalise all differences in predictions
equally, even though some chord pairs are more different than others, e.g., A7
and A differ only in the addition of a pitch, whereas B and A share no pitches.
To address this, we use a metric that is the total number of pitches that match
for each question between the model’s top response and the annotator’s first
response. We calculate this separately per-annotator, and then average across
annotators (PMave).

Loss and Perplexity(PPL): These are two measures from the language mod-
eling literature that we apply to see how well the models do on the true content
of songs. Note that this evaluation is over a different set: 8,748 randomly chosen
songs that are not included in model training.

Match Mode PM
best oo4 best oo4 ave

All

NI 7.52 30.10 32.00 64.00 48.33
PR 7.49 29.64 24.00 72.00 51.11
CEcbow 7.45 29.82 16.00 64.00 47.78
CEsglm 7.60 30.22 12.00 68.00 49.00

Intermediate

NI 8.17 32.68 33.33 71.43 48.80
PR 8.19 32.42 23.81 71.43 53.60
CEcbow 8.04 32.14 14.29 66.67 47.20
CEsglm 8.34 33.19 14.29 71.43 50.00

Match Mode PM
best oo4 best oo4 ave

Beginner

NI 5.61 22.44 0.00 44.44 40.50
PR 5.61 22.44 11.11 33.33 43.00
CEcbow 4.97 19.87 0.00 22.22 39.50
CEsglm 5.29 21.15 0.00 33.33 42.00

Expert

NI 7.92 31.67 28.57 85.71 55.00
PR 7.72 30.26 28.57 85.71 53.00
CEcbow 8.56 34.23 42.86 85.71 57.50
CEsglm 8.15 32.18 14.29 57.14 53.50

Table 1. Results for all models when compared with different sets of annotators based
on their expertise.

5.3 Results

Match and Mode. Table 1 reports metrics for each system when compared with
the beginner set, intermediate set, expert set, and full set of annotators. When
evaluating against all annotators, CEsglm is best in Matchbest and Matchoo4, NI
is best in Modebest, and PR is best in Modeoo4.

In the results for subsets of annotators, all systems tend to match experts
better than the beginner or intermediate groups. In particular, CEcbow obtains the
lowest scores when evaluated against the beginner group, but the highest when
evaluated against the expert group. To investigate this pattern, we compute
Matchbest and Matchoo4 for each individual annotator and then the Spearman
Correlation Coefficient rs between these metrics and their expertise. In Table 2,
we observe strong significant correlation between the CEcbow and expertise, and
no significant correlation for the other models. This can be explained by the fact
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that the models are trained on a large collection of songs composed by experts,
and the chord embeddings seem to capture the chord use style of the experts.

Pitch Matches. We report PMave for the models and expertise groups in
Table 1. Similarly to the Match and Mode metrics, we observe that all models
perform better when compared to annotators with higher expertise, and the
differences between groups is most extreme with CEcbow. Table 2 shows the results
of correlation analysis for pitch matches (Pearson Correlation Coefficient rp),
with a significant linear correlation for only CEcbow. This trend is visually shown
in Figure 3.
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Fig. 3. Total pitch matches between anno-
tator and output of CEcbow model, plotted
by the annotator’s expertise. The red line
is the line of best fit computed by linear
regression.

best rs p-val oo4 rs p-val PM rp p-val

NI 0.44 0.24 0.44 0.24 0.71 0.03
PR 0.64 0.06 0.57 0.11 0.43 0.25
CEcbow 0.72 0.03 0.72 0.03 0.94 2e-4
CEsglm 0.41 0.28 0.41 0.28 0.42 0.27

Table 2. Correlation coefficients for expertise
and Match and Pitch Match metrics.

Test Loss Test PPL

NI 1.42 4.16
PR 1.44 4.20
CEcbow 1.44 4.22
CEsglm 1.42 4.15

Table 3. Loss and perplexity metrics for the chord prediction models on a held-out
test set.

Loss and Perplexity. Table 3 shows the results on our 8,748 song test set. All
models perform similarly in this setting.

5.4 Discussion

We observe that automatic models produce predictions that resemble human re-
sponses. Comparing against annotators grouped by expertise, CEcbow compares
best to the high expertise group for all metrics, while the best model varies
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among the other groups. CEcbow’s predictions also correlate significantly with
pitch matches and annotator expertise. NI and PR achieve the highest Modebest
and Modeoo4 scores, however, fewer samples are considered because only twenty-
five had a unique mode chord across the annotators and only five of these samples
had more than half the annotators agree. Additionally, the chord symbol based
metrics are strict, requiring an exact match on chords, and had lower interan-
notator agreement than the pitch-based metrics.

While CEcbow’s predictions exhibit a strong pitch-match correlation, CEsglm’s
predictions exhibit no significant correlate at all. However, differences between
the CEcbow and CEsglm embeddings may not be as apparent in other downstream
applications; in fact, by the perplexity and test loss metrics shown in Table 3,
there is barely a difference between these two, or any, models. Investigating key
differences between these embedding models in musical contexts is a direction
for future work.

6 Case Study Two: Artist Attribute Prediction

Our second case study introduces the task of performing artist attribute predic-
tion, demonstrating that these chord representations could be used more broadly
in tasks involving musical stylometry and musical author profiling. With binary
classifiers using our chord representations, we predict three attributes as sepa-
rate tasks: gender (male or female), performing country (U.S. or U.K.), and type
of artist (group or solo artist).

Data. For these experiments, we augment the dataset with information obtained
with the MusicBrainz API,11 which includes the song artist’s location, gender,
lifespan, tags that convey musical genres, and other available information for
35,351 English songs (identified using Google’s Language Detection project [29]).
From this extracted information, we choose artist type, performing country, and
gender because of the sufficient quantity of data available with these attributes
enabling the tasks; we note that tasks dedicated to genre or time period are
of interest for future investigations, and our preliminary experiments using the
artists’ lifespan and tags as proxies for time period and genre indicated these
tasks are promising use cases for chord embeddings.

We use the top two most frequent classes of each attribute, and balance the
data to have the same number of examples for each class. For artist type, there
are 20,000 songs per class (group and solo). For performing country, there are
8,000 songs per class (U.S. and U.K.). For gender, there are 6,000 songs per class
(male and female). The number of samples varies because of differences in the
raw class counts and because not all songs have a label for each property.

Experimental Setup. We build two binary classifiers and compare their per-
formance with each chord representation. The first uses logistic regression (LR)
over a single vector for each song by aggregating chord representations. We also
experimented with an SVM classifier, but LR was more efficient with minimal

11 https://musicbrainz.org/
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performance trade-offs. The BOC methods are defined in Section 4.2. The PR

method aggregates the chords with a many-hot encoding vector counting each
chord pitch, normalized by the total number of pitches. The CE methods aggre-
gate chord embeddings by max-pooling, taking the most extreme absolute value
in each dimension across all chords.

The second classifier is a Convolutional Neural Network (CNN) that consid-
ers the chords in sequences. We experimented with an LSTM, and found that
the CNN functions better for these tasks. We use the CNN model for sentence
classification by Kim [13]12 over the chord progressions for each song, using the
same NI, PR, CEsglm, and CEcbow representations from the first case study.

For our model parameters, chosen in preliminary experiments on a subset
of the data, we use L2 regularization for the LR classifier, and the CNN model
uses filter window sizes 3, 4, 5 with 30 feature maps, drop-out rate 0.5 and
Adam [14] optimization. The sequence limit is 60 chords, cutting off extra chords
and padding when there are fewer.

Model Gender Country Artist Type

Logistic regression

BOCcount
*†‡57.53 †55.71 *†57.04

BOCtfidf
†55.94 †55.17 †56.06

PR 52.32 53.13 53.75

CEcbow
*†56.90 †55.37 *†56.92

CEsglm
†56.37 †55.85 *†56.88

Model Gender Country Artist Type

CNN

NI †58.93 †56.79 †59.20

PR 57.98 55.31 57.54

CEcbow 58.67 †57.30 †58.92

CEsglm
†58.95 †57.54 †59.29

*p < 0.05 over BOCtfidf , †p < 0.05 over PR, ‡p < 0.05 over CEsglm, §p < 0.05 over NI

Table 4. Accuracy scores from 10-fold cross validation in artist gender, country, and
type prediction tasks. The significance tests are performed among the logistic regression
models and CNN models separately.

6.1 Results and Analyses

Table 4 shows the models’ accuracy scores from experiments using 10-fold cross
validation. CEsglm CNN is the top performer for all tasks, significantly outper-
forming CNN PR and all LR models for all tasks, and NI for country.13 All
models outperform a random baseline (50%) significantly in each task. In each
task, CNN models significantly outperform their LR counterparts.

For insight into the models’ performance, we analyze the gender prediction
task, the only attribute where the LR CEcbow and LR BOCcount predictions differed

12 CNN model is built on https://github.com/Shawn1993/

cnn-text-classification-pytorch
13 By a paired t-test with p < .05.
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significantly. First, we compare the rate of use of each chord between genders.
To show the differences in Figure 4a, we divide the higher rate by the lower
rate, subtract one to set equal use to zero, and flip the sign when female use is
higher. We observe greater variations among chords with lower song frequency.
For instance, C/G, F#7, Bbm, and Ab are twice as salient for one gender than the
other. The highest variation among the top 20 chords reaches 1.5 times more
salient, and for the top 10, 1.2 times more salient for one gender.

To investigate the impacts of the musical relationships captured in embed-
dings (Section 4) to the CE models, we also compared use of five chord qualities.
Figure 4b shows higher relative frequency of suspended and diminished chords
among the songs of male artists, augmented and minor chords among the female
artist songs, and fairly similar use of major chords.
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The labeled chords are at least 1.5 more salient for one gender than the other.
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Fig. 5. Variation in chord quality usage by gender by ratio of use percentage.

6.2 Discussion

To our knowledge, this is the first time that an association between chord rep-
resentations and author attributes has been explored. Each model for each at-
tribute showed significant improvement over a random baseline of 50%, indi-
cating there are quantifiable differences in our music data between the genders,
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countries, and artist types. In addition to the tasks we presented, we also ob-
served improvement when using the system to predict the life-period of the artist
and their associated genres. As life-period is a proxy for the music’s time period,
chord embeddings could benefit future work in musical historical analysis.

For gender, the variation of rare chords may contribute to BOCcount outper-
forming CEcbow. However, CEcbow significantly outperforms BOCtfidf which gives
more weight to rare chords by their inverse-document frequency. This suggests
that chord rarity is not the only critical feature. The variations of chord qual-
ity use may contribute to the performance of the CE models as the embeddings
capture musical relationships.

LR PR consistently underperforms all other models, which may indicate the
importance chord structures. Different chords with the same pitches (e.g., G and
G/B) have the same PR vector. Chords with overlapping pitches have similar PR

vectors. However, CNN PR, which performs closer to the others, encodes pitch
orderings (Section 4.2) and BOC methods encode chord symbols which indicate
structure. CE representations are learned from chord symbols, likely capturing
contextual functions of chord structures. These functions would matter for the
CNN models which make predictions from chord sequences rather than a single
aggregated vector. Since we observed the best performance by CNN CEsglm, there
suggests the importance of contextual semantics of chord structures. A deeper
study into structural semantics captured by chord embeddings is a direction for
future work.

7 Conclusion

In this paper, we presented an analysis of the information captured by chord em-
beddings and explored how they can be applied in two case studies. We found
that chord embeddings capture chord similarities that are consistent with im-
portant musical relationships described in music theory. Our case studies showed
that the embeddings are beneficial when integrated in models for downstream
computational music tasks. Together, these results indicate that chord embed-
dings are another useful NLP tool for musical studies. The code to train chord
embeddings and the resulting embeddings, as well as the next-chord annotations
are publicly available from https://lit.eecs.umich.edu/downloads.html.
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