

Mahmou University

Introduction

Problem Definition:

Given a movie video and its subtitles, label each segment of the s subtitles with the name of its corresponding speaker

Input 01:02:00 --> 01:02:01 Jack, must you go? 01:02:01 --> 01:02:04 ime for me to go rov vith other slaves. 01:02:07 --> 01:02:08 Good night, Rose.

nt for video understanding, indexing

generalize:

cannot work on new movies get speaker names and labels

• Ignore text, use only vision and speech

Contributions:

Motivation:

- Propose a novel weakly supervised unified multimodal optimization framework for speaker naming
- Construct new speaker naming dataset of 18 movies and 6 episodes of TV shows
- Achieve state-of-the-art performance on movieQA subtitles challenge

Data

- Construct a new dataset consisting of:
- 24 videos (18 movies & 6 episodes of a TV show)
- 31,019 turns
- 21.99 hours of dialog
- 437 different character names

with each subtitle segment manually labeled with its corresponding speaker name

• Publicly available at: <u>http://lit.eecs.umich.edu/downloads.html</u>

Speaker Naming in Movies Mingzhe Wang, Max Smith, Noriyuki Kojima, Jia Deng, Rada Mihalcea {mazab,mzwang,mxsmith,kojimano,jiadeng,mihalcea}@umich.edu an

1		Iuisu
	- [Sheldon, Dr. Cooper, Sheldon Cooper]	—> Shelde
	- [Mrs. Cooper, Mary Cooper, Mary]	—> Mary
	- [Leonard]	-> Leona

	Precision	Recall	F-score
B1: MFMC	0.0910	0.2749	0.1351
B2: DRA	0.2256	0.1819	0.1861
B3: Gender-based DRA	0.2876	0.2349	0.2317
Our Model (Skip-thoughts)*	0.3468	0.2869	0.2680
Our Model (TF-IDF)*	0.3579	0.2933	0.2805
Our Model (iVectors)	0.2151	0.2347	0.1786
Our Model (Visual)*	0.3348	0.2659	0.2555
Our Model (Visual+iVectors)*	0.3371	0.2720	0.2617
Our Model (TF-IDF+iVectors)*	0.3549	0.2835	0.2643
Our Model (TF-IDF+Visual)*	0.3385	0.2975	0.2821
Our Model (all)*	0.3720	0.3108	0.2920

	Precision	Recall	F-score
Our Model	0.3720	0.3108	0.2920
Voice Gender (VG)	0.4218	0.3449	0.3259
VG + Name Gender (NG)	0.4412	0.3790	0.3645
VG + NG + Name Ref	0.4403	0.3938	0.3748

Method		Subtitles	
		test	
SSCB-W2V (Tapaswi et al., 2016)	24.8	23.7	
SSCB-TF-IDF (Tapaswi et al., 2016)	27.6	26.5	
SSCB Fusion (Tapaswi et al., 2016)	27.7	-	
MemN2N (Tapaswi et al., 2016)	38.0	36.9	
Understanding visual regions	-	37.4	
RWMN (Na et al., 2017)	40.4	38.5	
C-MemN2N (w/o SN)	40.6	_	
SC-MemN2N (Ours)	42.7	39.4	