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Problem Definition:
Given a movie video and 1its subtitles, label each segment of the

Framework Overview:

Intrinsic Evaluation:

Introduction Framework & Model Experiments & Results

* Fine-tuning parameters using 4 movies and testing on the rest
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Extrinsic Evaluation:

 We build a full QA model to explore the effectiveness of the
speaker naming model on movieQA task

e Use supervised approaches, cannot work on new movies
e Rely on scripts/cast lists to get speaker names and labels

Talking Face Embedding:

* [gnore text, use only vision and speech

Q: Who sees Bruce and Al: Jones
Selina together in Florence?" A2: Gordon
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