Motivation

Action Recognition systems with known intent perform better. Knowing the reason for performing an action is an important step for **understanding** that action.

Causal reasoning has **direct applications** on many real-life settings, for instance to understand the consequences of events (e.g., if there is clutter, cleaning is required), or to enable social reasoning (e.g., when guests are expected, cleaning may be needed) -- see Fig 1.

Data Collection

my morning **routine** my everyday **routine**

Lifestyle Vlogs:

ConceptNet /

Clean is motivated by ...

company was coming remove dirt

Data Pre-processing

Reason Clustering **Transcript Filtering**

Video Filtering

Initial	9,759
Actions with reasons in ConceptNet	139
Actions with at least 3 reasons in CN	102
Actions with at least 25 video-clips	25

Table 1: Statistics for number of collected actions at each stage of data filtering.

Video-clips

Video hours

Actions

Reasons

Transcript words

Table 2: Data Statistics

1,077

107.3

109,711

Data Annotations

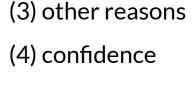
3 annotators per video

Moderate Agreement (0.6 kappa)

They are asked to identify:

(1) the reasons shown or mentioned in the video for performing a given action

(2) are the reasons mentioned verbally, shown visually, or both



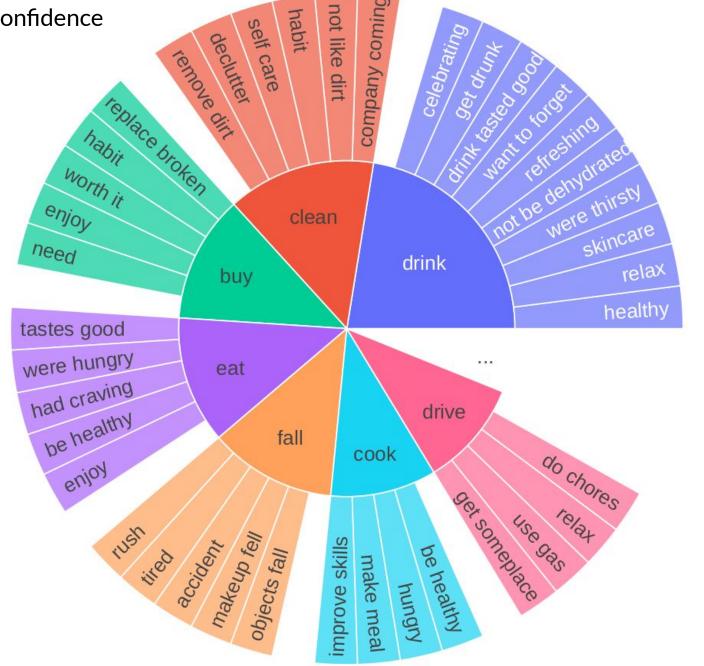


Fig 2: Distribution of the first seven actions, in alphabetical order, and their reasons

WhyAct: Identifying Action Reasons in Lifestyle Vlogs

Oana Ignat, Santiago Castro, Hanwen Miao, Weiji Li, Rada Mihalcea oignat@umich.edu

Why is the person cleaning?

to the bedding I always do it on a strip bed because I usually clean the bedding..

- company was coming ☐ do not like dirtiness
- declutter
- ☐ remove dirt

'".. blow up mattress so **it feels really nice to be able to have this space for them** in the summer months I focus on [cleaning] the windows more because I noticed .."

company was coming ☐ do not like dirtiness □ declutter

v remove dirt

Fig 1: Overview of our task: automatic identification of action reasons in online videos. The reasons for *cleaning* change based on the visual and textual (video transcript) context. The figure shows two examples from our WhyAct dataset.

Task: Human Action Reason Identification in online vlogs

Dataset: WhyAct of 1,077 (action, context, reason) tuples

Models: single and multi-modality

Data Analysis: what kind of actions are depicted

Future work: incorporate reasons in action recognition models

Data and Code:

https://github.com/MichiganNLP/vlog action reason

Experiments

The methods we run are unsupervised with fine-tuning on development set.

		Test	Development	
	Actions	24	24	
]	Reasons	166	166	
,	Video-clips	853	224	

Table 3: Statistics for the experimental data split.

Baselines

Multimodal

Analysis

Text: Transcripts and reasons are represented using Sentence-BERT Video: I3D and Bag of objects and collection of Automatic Captions

Textual Similarity: cosine (transcript, reason)

Natural Language Inference (NLI):

Hypothesis Premise Entails? Transcript reason

- Bag of Objects (Detectron 2)
- Dense Video Captions

Encoder - Decoder **Embedding Layer Linear Layer** because ____ [...] Transcript: I3D

Fig 3: Overview architecture of our **Multimodal Fill-in-the-blanks model**. The span of text "because ____" is introduced in the video transcript, after the appearance of the action. This forces the **T5** model to generate the words missing in the blanks.

Method	Input	Accuracy	Precision	Recall	F1			
	BASELINES							
Cosine	Transcript	57.70	31.39	55.94	37.64			
similarity	Causal relations from transcript	50.85	30.40	68.91	39.73			
	SINGLE MODALITY MODELS							
Natural	Transcript	68.41	41.90	48.01	40.78			
Lan-	Video object labels	54.49	31.70	59.93	36.79			
guage	Video dense captions	49.18	29.54	68.47	37.40			
Inference	Video object labels & dense captions	36.93	27.34	87.97	39.11			
Fill-in-the-blanks	Transcript	44.04	30.70	87.10	43.59			
Multimodal Neural Models								
Fill-in-the-blanks	Video & Transcript	32.6	27.56	94.76	41.11			

Table 4: Results on test data

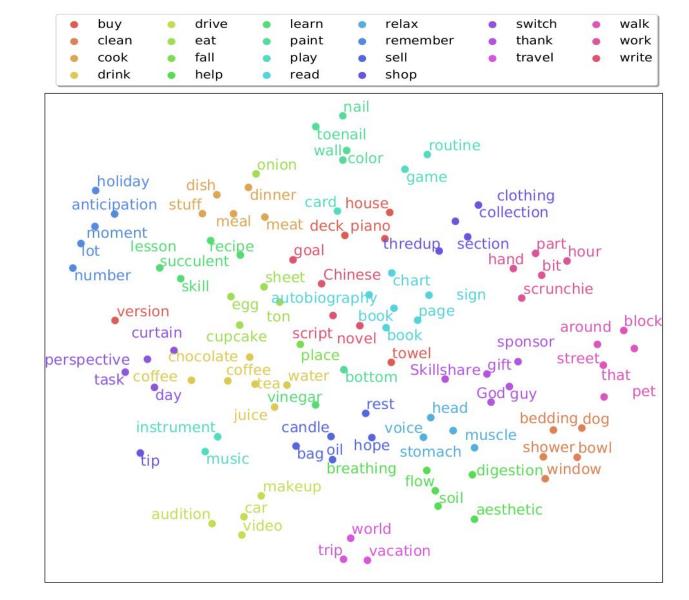


Fig 4: **t-SNE** representation of the five most frequent direct objects for each action/verb in our dataset. Each color represents a different action.